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A number of new experiments have been performed on the rise of air bubbles in 
clean mixtures of distilled water and pure, reagent grade, glycerine covering a range 
of the relevant parameter, the Morton number, M o  = gv4p3/g3, of Here g is 
the acceleration due to gravity, v the kinematic viscosity, p the density and CT the 
surface tension of the mixture. In these careful measurements several scaling regimes 
have been found that have not been discussed before in the extensive literature on 
the subject. The transitions between these regimes have been delineated and attempts 
made to discuss the dynamical processes that might be important in each of them. 

1. Introduction 
There are numerous industrial processes that require the addition of gases to liquids 

resulting in the rise of bubbles either as individuals or in an interacting cloud. In 
order to advance our knowledge of the momentum, heat and mass transfer occurring 
during bubble rise, accurate experiments are needed not only for their own sake but 
also as checks on the accuracy of the analytical and numerical models of these flows. 

As a result, the subject of bubble rise in a viscous fluid has a long history and a 
huge bibliography has been generated. The standard reference work is the book of 
Clift, Grace & Weber (1978, referred to as CGW in what follows), which contains 
a listing of over 1200 contributions to the subject of the motion of bubbles, drops 
and particles. There is also an excellent review of the more mathematical aspects of 
the subject by Harper (1972). With this in mind it would seem unlikely that further 
work could reveal anything that is substantially new and different from these prior 
efforts. We believe that the present work shows that this is not the case. By using a 
pair of fluids that are miscible in all proportions and that allow us to cover a wide 
range of the relevant parameters in a consistent manner we have, in fact, uncovered 
some interesting new results that reveal a number of new scaling regimes which in 
turn suggest the importance of different dynamical interactions within each range of 
parameters. 

The basic problem concerns the rise of a volume, V ,  of air in a liquid with the 
following properties: density, p, kinematic viscosity, v, and surface tension, (i. The 
density and viscosity of the air in a bubble are assumed to be very small compared 
with the values in the exterior fluid so that the full value of the gravitational 
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acceleration, g, is the relevant value to use in the following dimensional analysis. The 
one dependent variable that is measured is the actual rise velocity, U T ,  of the bubble 
or the corrected value in a tube of infinite diameter UT, which we designate as U 
(see $2). Under these circumstances there are two independent and one dependent 
dimensionless parameters. 

Defining the equivalent spherical diameter, d, of the bubble, as 

we can then extract two truely independent parameters as 

the Eotvos number, Eo, = pd2g/o (sometimes called the Bond number), 

and the Morton number, Mo, = gv4p3/03 

The latter dimensionless quantity is particularly useful since it contains only fluid 
parameters and g, and hence is constant in any one experimental sequence. However 
it is a somewhat inconvenient parameter to use depending as it does on v4. Thus the 
numerical range typically covers thirteen decades and grossly exaggerates the effect 
of the viscosity variations. We suggest that a parameter like M o " ~ ,  which is linear in 
the kinematic viscosity, is a more realistic choice and while we feel forced to use M o  
in what follow, we quote the values of M o ' / ~  in table 1 for reference. On the other 
hand it is clear that E o  is not the only choice for an independent parameter that 
contains the bubble diameter. In terms of viscosity and gravity rather than surface 
tension and gravity it can be written: 

1/3 Eo or in terms of c and v, but no gravity, as - = 

The choice of a dependent dimensionless parameter is even more extensive with at 
least four in common use: 

Weber number, W e  = pU2d/o = 4Eo /3Cd, 

Froude number2, Fr2 = U 2 / g d  = W e / E o ,  

Drag coefficient, Cd = 4gd/3U2 = 413 Fr2,  

and Reynolds number, Re = Ud/v 5 Well2 (Eo  / M o ) ~ ' ~  for example. 

Often, in the past, these have also been used as independent parameters, for 
perfectly valid theoretical reasons. We follow this example only to compare with 
previous results and to extract some of the scaling laws that seem to be important. 
Whenever possible we use true independent variables. 

We note, also, that a number of velocity scales can be extracted, two of which are 
obvious, namely 

UFr = (gd)'I2 and UST = (o /pd)  ' I 2 ,  

and which are found to be critical in what follows. A third velocity scale is less obvious, 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Glycerine Temperature Surface tension Density Viscosity 
('/a by wt) ("C) (dyn ~ r n - ~ )  (g cm-3) (cP) M o  M O ' / ~  We, 

0.00 35.0 69.40 0.99390 0.71500 7 .710~  lo-" 1.67~10-O~ 2.30 
0.00 20.0 71.68 0.99823 1.0050 2 .722~  lo--" 2.28~10-O~ 2.30 
1 .00 20.0 71.64 1.0006 1.0320 3 .024~10- '~  2.34~10-O~ 2.40 
2.00 20.0 7 1.60 1.0030 1.0570 3.325x10-" 2 .40~10-~ '  2.40 
4.00 20.0 71.54 1.0078 1.1500 4.650xlO-" 2 .61~10-~ '  2.50 
6.00 20.0 71.46 1.0125 1.1775 5 .104~  lo-" 2.67~10-O~ 2.40 
10.0 20.0 71.31 1.0221 1.3200 8.034x10-" 2 . 9 9 ~ 1 0 - ~ ~  2.55 
15.0 20.0 71.14 1.0345 1.5420 1.489 x lo-'' 3.49~10-O~ 2.50 
20.0 20.0 70.94 1.0469 1.7750 2.605 x 4.02 x 2.75 
30.0 20.0 70.33 1.0727 2.5500 I . ~ I ~ X I O - ~ ~  5 . 7 7 ~ 1 0 - ~ ~  3.05 
40.0 20.0 69.61 1.0993 3.8400 5 . 7 4 9 ~  8 . 7 1 ~ 1 0 - ~ ~  3.30 
60.0 20.0 67.82 1.1538 9.4500 2 . 1 7 4 ~ 1 0 - ~ ~  2 . 1 6 ~ 1 0 - ~ *  4.20 
80.0 20.0 65.50 1.2085 60.100 3.769x1WW 1 . 3 9 ~ 1 0 - ~ '  
99.8 40.0 61.53 1.2470 275.00 1 .930~10-~ '  6.63x10-"' 
99.8 30.0 62.08 1.2523 580.00 3.710 1.39 
99.5 20.5 62.39 1.2597 1250.0 7 . 8 3 0 ~ 1 0 ~ ~ '  2.97 

TABLE 1 ,  Physical properties of experimental water-glycerine combinations. 

that is, U v  = d 2 g / v  = U:r/Up, which appears rather than the more commonly used 
viscous velocity scale, U, = v / d .  

In $2 the details of the experimental apparatus and procedure are presented. Section 
3 contains a presentation of the results conveniently divided into two sections: the 
high-viscosity regime, i.e. values of M o  2 0.19, and the low-viscosity regimes, i.e. 
M o  5 2.17 x while one case at Mu = 3.8 x is considered to have an 
intermediate behaviour and is included in both. The conclusion and discussion are 
contained in 94. 

2. Apparatus and procedure 
The experiments were carried out in a cylindrical Lucite tank of inside diameter 

10.2 cm and length 152.2 cm. This was filled with a mixture of triply distilled water 
and pure reagent-grade glycerine in various proportions (see table 1). The cylinder 
was surrounded by a square tank 16.6 cm on a side and the space between the two 
tanks was continuously replenished with water from a constant-temperature bath. We 
were able to maintain the temperature of the working fluid constant to better than 
&0.0SoC in order to ensure that the properties of the fluid did not change during 
an experimental sequence. Air bubbles were introduced into the bottom of the inner 
tank by means of a specially designed adaptor into which syringes and hypodermic 
needles of various sizes could be inserted. Four different syringes ranging in total 
volume from 5 p1 (5 mm3) to 3 cm3 were used to either inject a single bubble directly 
or, for the larger bubbles, to store them in a specially designed trap from which they 
could be released when a sufficient volume had been allowed to accumulate. 

The velocity was found by timing bubble passage between two marks 110 cm 
apart within the region where the bubbles had attained their terminal velocity. Each 
experiment was repeated three times and the results were averaged. 

The fluid densities were measured using a balance hydrometer while the fluid 
viscosities were measured using an Ostwald viscometer for the lower values and a 
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rotating disc viscometer for the larger values. The surface tension of each mixture 
was obtained from tables in Miner & Dalton (1953). Table 1 shows the conditions for 
each set of tests presented here and the relevant value of Mo and other parameters of 
interest. Note that the fluid properties were changed by changing both the percentage 
of glycerine and the fluid temperature. Also a number of extra tests were run for 
small values the glycerine percentage, between 1 and 6% ( T  = 20"C), in order to 
check that the purity of the glycerine was not causing a problem, as it had been 
in some earlier experiments that had to be discarded. Eventually this was found to 
have been caused by an undetected leak between the inner and outer chambers which 
allowed the unpurified bath water to contaminate the working mixture. 

Small corrections were made for the fact that the bubble pressure changed as it 
rose in the tube. Also minor corrections were made for wall effects since the largest 
value of 2 = d/D, where D is the cylinder diameter, was of the order of 0.12. Here 
we used the correction presented in CGW, p. 233, namely: 

which gives a correction of at most 2% to the measured terminal velocity ( U T ) .  For 
simplicity, the subscript will be dropped and will use U as the terminal velocity in a 
tube of infinite diameter. 

3. Results 
The experiments covered such a huge range of M o  so that, for example, Re varied 

over six orders of magnitude, that it was deemed necessary to divide the results into 
two major groupings: the first, for large values of M o  and hence small values of Re 
and the second for the smaller values of Mo. The division is somewhat arbitrary and 
can best be explained after the results have been presented at which time we believe 
the criterion used will be obvious. For the moment we simply state, referring to table 
1, that the first grouping includes the values of Mo 3 0.19, the value M o  = 3.8 x 
is considered to be a transitional or intermediate case and is included in both groups, 
while all values of M o  < 2.17 x lop7 are included in the second grouping. 

3.1. Experiments at large values of M o  3 3.8 x lou4 
The primary results of this section are shown in figure 1 in what might be called 
the classical form. This is a presentation in terms of two dependent variables, which 
allows comparison with the well-known theories of C, us. Re that have been part of 
the classical literature for many years. On each graph we show several lines. The 
primary one is the result of Rybczynski-Hadamard (CGW, p. 33) for an inviscid 
spherical bubble in a viscous liquid which together with the Oseen correction gives 
for Re << 1 

cd=- 16 ( l + s R e ) ,  1 
Re 

see e.g. Taylor & Acrivos (1964). The curve for the drag of a solid sphere is also 
shown, which in the Oseen limit is given as 

(CGW, p. 43). However as discussed in Maxworthy (1965) and CGW, p. 44, this result 
is only adequate up to Re = 3. In order to extend the curve to even higher Re we 
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FIGURE 1. cd P S .  Re for the four largest values of Mo. The ordinate is correct for the lower figure 
and each of the curves above this is displaced vertically by one decade. 

are forced to use one of the fitted curves given in CGW, p. 11 1. For convenience, and 
because it asymptotes the result above, we have chosen that due to Lapple (1951): 

24 
~d = - ( I  + Re 

~ e " ~ ~ )  (3.3) 

which is accurate to +5% and -8% for 0 < Re < 1000 (CGW, p. 111). 
When we plot our results with these curves as reference (figure 1) we notice several 

interesting points. For the larger bubbles, i.e. the highest values of Re, the points are 
well above the bubble curve (equation (3.1)), and for the largest are even above the 
solid-sphere fitted curve (equation (3.3)), because we are dealing with bubbles that are 
distorted into the shape of oblate ellipsoids by the dynamical effects of the approach 
flow. As the bubble size (or Re) decreases further the results approach the curve 
for spherical bubbles, equation ( 3 4 ,  and then for the smallest bubbles approach the 
curve for solid spheres again, (3.1) and (3.3). 

We can explain part of the former effect using the results of Taylor & Acrivos 
(1964). In that paper they related the ellipticity (x = major diameter of the elliptical 
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FIGURE 2. Cd us. Re for (a) Mo = 78.3, ( b )  Ma = 3.71. Comparison with the theoretical curve of 
Taylor & Acrivos (1965), i.e. Cd = 16/ Re[l + Re /8 + We /12]. 

cross-section/its minor diameter) to the Weber number as 

and, the drag coefficient as 

(3.5) 
16 

Cd = - (1 + Re +& We) + 0 (Re2 In Re) . 
Re 

These results are plotted on figure 2, and a reasonable agreement found for the 
largest values of Mo,  i.e. the smallest value of Re. Since we can write We = 
Re2 [Mo/Eo]~’* we note that the We term will dominate the Re correction when 
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M o  >> 2.25E0Re-~. Note that this holds only for values of Re above the closest 
approach of the experimental points to the theoretical bubble curve. As discussed 
in $3.2 also, the curve for M o  = 3.8 x appears to represent a transitional case 
between the high and low values of M o  since it approaches the lower line on the 
graph (i.e. equation (3.10)) which represents the limiting bubble drag curve for the 
lower values of Mo, as shown in $3.2. 

The approach of the small-bubble drag to the solid-sphere curve for small Re needs 
further discussion. As pointed out in other work on this subject (e.g. CGW, p. 124) 
it appears that at least two effects could be important. The most likely is due to the 
accumulation of surface-active agents on the sphere that are then swept backward 
toward the rear stagnation point. This creates a surface tension gradient which 
generates a surface flow that opposes the primary flow around the sphere (e.g. Ogiiz 
& Sadhal 1988). This in turn increases the drag on the sphere at these low values 
of We (x - 1 < lop5). Unfortunately this and similar theories could not be checked 
for agreement with the experiment because the amount of accumulated surface agent 
was unknown and could not be measured (i.e. there are two unknown quantities and 
only one measurement). The second effect is the hypothesized existence of a dilational 
surface viscosity (K) that has a similar effect. In an attempt to quantify these effects 
we use the results of Agrawal & Wasan (1979), who derive the following equation 
for the combined effect of these two mechanisms, shown here for a bubble with zero 
internal viscosity, moving at low Re: 

where 
4112 u,LL N =  0.91 N1I2 

d ,  = 
prz FI = __ 
PU ’ 1 + 0.53W2’ dD ( p  + 4 ~ / 3 d )  ’ 

and p is the dynamic viscosity of the bulk fluid, y the coefficient of the linear 
relationship between surface and bulk concentration, p the coefficient of the linear 
relationship between surface tension and surface concentration (dyn cm g-’ mol), T,  
the saturation surface concentration (g mol cm-2), D the bulk diffusivity of surfactant 
(cm s-l). Also cds = 24/ Re is the Stokes drag coefficient for a solid sphere and cd the 
measured drag coefficient. In what follows we will assume initially that Us = d2g/18, 
the Stokes fall velocity for a solid sphere. Two limits can be considered: the first, 
corresponding to Fldl = 0, quantifies the effect of the interfacial viscosity only, while 
that for IC = 0 shows the effect of the accumulation of surface-active agent. The first 
can be written, for Fldl  = 0, 

(3.7) 

where d,. = 4 1 ~ / p  is a critical diameter. We note for future reference that [cds/cd] - 1 = 
1/3 when d / d c  = 1. The second gives, for K = 0, 

1 - (dC/d)’ 

cd 2 + (d,/dI2’ 
_ -  Cds 1 =  

where we have used the fact that N >> 1 for typical values of the parameters and 
where we have set the value of d, = 9.1(-PT,g~)’/~, so that [cd,/Cd] - 1 = 1/3 at 
d / d ,  = 1, as above. This choice of 1 /3 for the critical drag ratio is somewhat arbitrary 
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and was chosen over what is possibly a more logical choice of 1/2 because of the fact 
that not all of the experimental curves touched the ‘bubble-drag’ line and hence this 
made the determination of a d, somewhat more difficult with this value. To complete 
the comparison we first plotted [cds/cd] - 1 us. d for our data in order to determine 
the value of d,. The final product is the curves shown in figure 3. Not surprisingly 
the trend represented by equation (3.8) seems to describe the experimental data 
more accurately, showing that even in this clean system sufficient impurity exists to 
dramatically affect the drag on the very small bubbles. The actual values of d, found 
here are shown on figure 3 and plotted on figure 8, together with the values extracted 
from the low-Mo data using a similar technique. For the typical values of the fluid 
properties given in Agrawal & Wasan (1979 p. 219), we obtain a value of d, w 3.6 
mm if we use the equation for Us quoted above. If however we use the velocity 
Us = d2g/12v, the value for a bubble in Stokes flow, d, becomes approximately 2.9 
mm. Both are close to the values found for our largest values of Mo. However, since 
we do not know what is contaminating our system this comparison should only be 
considered as a consistency argument and not as a quantitatively correct statement. 
The fact that the values are so close to the measured ones argues for the correctness 
of our identification since the value of 41c/p calculated is of the order 2 cm or greater 
for our fluids. 

3.2. Experiments at low Mo < 3.8 x lop4 
In many ways these are the most interesting of all the present results since they reveal 
several interesting regimes with scaling laws that have not been seen before, as far as 
we are aware. While what follows could be viewed basically as a curve-fitting exercise, 
the results obtained are sufficiently simple for us to believe that they must ultimately 
reveal some straightforward underlying dynamical balances. We have plotted a large 
number of cases in several different ways where, perhaps, only one or two were 
necessary to make a particular point. We have done this for two reasons: first, often 
the changes with the change in Mo are so subtle that we believe more than one graph 
is needed to show the effects and secondly we believe that these data are sufficiently 
basic that the maximum amount of material should be published as an archive. 

We start the presentation by showing the raw data in figure 4. Noteworthy, in these 
curves of terminal velocity versus equivalent diameter, is the apparently universal 
behaviour of each curve for the larger values of d, with each curve deviating from the 
underlying trend by first rising above and then falling below it as d decreases, except 
for the largest value of Mo, i.e. the transitional curve discussed in $3.1. In order to 
discuss the underlying physics we need to replot the data in dimensionless form. We 
start with what might be called the conventional representation since the relationship 
between two dependent quantities, cd and Re, is the one most often plotted. The 
resulting set of curves is shown in figure 5 for a number of values of Mo. As reflected 
in the raw data, for the large values of d, i.e. the larger values of Re for each value 
of Mo, the curves approach but do not reach the spherical-cap result: 

(CGW, p. 206) or, 

for our relatively small bubbles. 
For the smallest bubbles the curves approach the solid-sphere results as seen before 

in $3.1 for large Mo. In between Cd goes through a very sharp minimum at essentially 

Fr2 = 0.5, 
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FIGURE 3. [Cds/Cd] - 1 us. d /dc  for (a) M o  = 78.3, ( b )  3.71 and (c) 0.19. The theoretical curves 
from Agrawal & Wasan (1979) for K = 0 and F l d l  = 0 are shown. 
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FIGURE 4. Raw data curves of U us. d for selected values of Mo. 
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FIGURE 5. The data of figure 4 plotted as Ca us. Re. The asymptotes for low-Re drag of a sphere 
and bubble and the spherical-cap limit are shown, as well as the C, values for a solid sphere (Cds) 
and the theoretical values of Moore (1963), Cj''. The curve marked Cdh is a straight line drawn 
tangentially to all of the experimental data. 

the local maximum of the relevant U us. d curve. This curve of transition between 
the two extreme cases contains a number of sub-regimes that can be anticipated by 
reference to figure 13, the details of which will be explained in what follows. 

We note first that it is possible to draw a straight line that is closely tangent to all 
of the curves and which has the equation 

(3.10) c,, = 1 1.1 ~ e - ' . ~ '  . 
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FIGURE. 6. A comparison of our experimental results, Cdh, with the theories of Moore (1963), C y ) ,  
Hartholdt et al. (1994), C y ’ ,  Ryskind & Leal (1984a,h), C y ) ,  Brabston & Keller (1975), C y ) ,  Mei 
et al. (1994), CIIMKL’, and the compilation in CGW p. 131, Cr’.  The curves marked c d  and Cd(fit) 
are the experimental values and fitted values using equation (3.13). The point marked ‘sphere limit’ 
is that at the tangent to the Cdh curve and represents the bubble with the maximum eccentricity 
(x = 1.1) that reproduces the result for a sphere. 

That is, at a given Re  no bubble can have a drag coefficient smaller than that 
given by equation (3.10). We designate this as the spherical-bubble drag curve, i.e. 
the high-Re equivalent of the 16/ R e  line at low Re. This is to be compared to the 
results quoted in CGW, p. 130: Cd = 13.7 As is the case 
for large M o ,  deviations from this curve must then be due to impurity accumulation 
for small bubbles and bubble distortion at high values, up  to the drag minimum. To 
explore all of these features further we start by comparing equation (3.10) with the 
available analytical and numerical calculations of spherical bubble drag at high Re. 
These include the analytical result of Moore (1963) (designated Cb”’) : 

and Cd = 14.9 

(3.11) 

and the numerical results of Ryskind & Leal (1984a, b) ,  Brabston & Keller (1975), 
Hartholt et al. (1994 and Mei, Klausnel & Lawrence (1994) (their equation 2) (des- 
ignated Cy’, Cy’, C, Oh), CbMK respectively), and of Hamielec, Johnson & Houghton 
(1967), Le Clair & Hamielec (1971) among many that have been combined by CGW 
on their p. 131. This latter curve we designate in the figure as (Cy) ) .  These com- 
parisons are shown on figure 6 where, for the moment, experimental points marked 
Cd and Cd(fit), should be ignored, since they are included to demonstrate a point 
to be made later. We note immediately that all results are in reasonable agreement 
below a Reynolds number of about 100 and until the curve Ci’) becomes inap- 
propriate below a value of Re x 25. However, above Re = 100 large differences 
appear, with the numerical computations of Ryskind & Leal (1984n, b), Brabston & 
Keller (1975), Hartholt et al. (1994), Mei et al. (1994), Magnaudet et al. (1995) and 
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FIGURE 7. [ c d s / c d b ]  - 1 and [ c d s / c d ]  - 1 us. d / d c  showing the rapid decrease after 
the maximum value, as in figure 3. 

Blanco & Magnaudet (1995) agreeing with Moore (1963), and those reported on p. 
131 of CGW agreeing closely with our experimental line. Several points need to be 
discussed concerning the results. First, the surprising difference between the two sets 
of theoretical-numerical data must be confronted. All are for spherical bubbles in 
Newtonian fluids and it seems unlikely that differences in cd of up to 100% could be 
due to numerical inaccuracies; and each curve is backed by four or more independent 
calcuations. The present authors are tempted to believe the lower curve, mainly 
because of its analytical basis, but each reader should to make his/her own decision 
on this matter based on the evidence presented here, and elsewhere in the literature, 
and on a detailed reading of the papers in question. Second, assuming that the 
limiting drag is given by lowest curve of figure 6, why are the present experimental 
values considerally higher at large Reynold number? Consider a typical curve of 
figure 5, e.g. that for Mo = 2.72 x lo-". We have found that at Re w 200 the value 
of W e  w 1, so that at this stage the distortion of the bubble is already substantial 
(x w 1.14, if we use equation (3.12)) this means in turn, that the drag coefficient 
must be already larger that the spherical value. For smaller values of Re than this, 
the curve rapidly departs from the base curve (equation (3.10)) and by Re w 60 has 
reached the solid-sphere curve (equation (3.3)), suggesting, as shown in what follows, 
that even in triply distilled water the effect of impurities is important for such small 
bubbles (d  < 1 mm). This all suggest that a combination of impurities and bubble 
distortions conspires to increase the drag above the calculated values for a spherical 
bubble. 

Returning to the experimental data, in an attempt to quantify the effect of liquid 
impurities for each value of Mo we start by considering the points with values of 
Re below the point of tangency to equation (3.10). As in $3.1 we plot [cds/cdb] - 1 
and [Cds/Cd] - 1 us. d / d c  where in this case c d s  is given by equation (3.4) and cdb 
by equation (3.10) and we use a technique that is the same as for the high-Mo cases 
but which uses the local, Reynolds-number-dependent, value of the drag coefficient 



Experiments on the rise qf air bubbles in clean viscous liquids 433 

3.;1 7.8.3 

= 0.19 

10 10 ") 10-8 10-6 10-4  
MO 

FIGURE 8. Critical values of d (d , )  taken from figures like figure 7. The value of the critical range of 
We ( W e , )  and its extent in E o  (Eo,,,,,. Eolllln) are shown also, as taken from figures like 12 and 13. 

ratio. A typical result is shown in figure 7 while a plot of d, versus M o  is shown in 
figure 8. The rest of the curves on this latter figure refer to results to be discussed 
later. We note here that the approach to the solid-sphere curve is very abrupt, as in 
the case of high Mo, and again suggests, but does not prove, that the accumulation 
of surface-active agent is responsible for this effect. 

For bubble Reynolds numbers between the tangent point to equation (3.10) and 
the drag minimum we have a theory to which we can refer to help explain our 
results. This theory, due to Moore (1965), is the high-Reynolds-numbers equivalent 
of the Taylor Acrivos theory for small Re, e.g. equations (3.4) and (3.5). The bubble 
distortion is given in this case by 

9 
64 

~ = l + - W e ,  

and 

(3.12) 

where G(x)  and H ( x )  are calculated functions that reduce to 1 and -2.21 respectively 
as x tends to unity, i.e. equation (3.12) reduces to equation (3.11). 

and the experimental values 2.17 x lo-' and 5.75 x lo-' for W e  < 2 are shown in 
figure 97. Superimposed are two of our experimental curves for the latter two values 
of M o  with tangent points at values of Re 5 100. One can see from this figure that 
the trend away from the minimum-drag tangent curve toward the minimum-drag 
point, for each Mo, is reproduced. However the numerical values for both cases are 
too high by about 30% before the drag minimum, while the trend after the minimum 

t We are grateful to Professor D. W. Moore of Iinperial College, London for providing us with 

The plot of this equation for values of M o  = lop8, lop9, lo-'', lo-", and 

the tables of values from which this plot and others were constructed. 
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1 OD 10' 1 o2 
Re 

103 

FIGURE 9. Cd us. Re, for several values of Mo, from the theory of Moore (1965). Two of the theo- 
retical curves are for values of M o  that correspond to two of the experimental values considered. 

drag point is not well represented since, as we shall see, the dynamics there are quite 
different from those assumed in the theory. As discuss above it is likely that while 
the same mechanism must operate at higher values of Reynolds number, the effect 
is masked by the effects of very small impurity concentrations that raise the base 
curve (equation (3.10)) above the theoretical-numerical values. Finally we note one 
interesting result for the regime with Re below the minimum drag point that arose 
while examining the data sent to us by Professor Moore. As an exercise we plotted 
his values of We versus Re and noted that for all values of M o  the data below the 
minimum drag point followed a power law W e  = ~ ( M o ) R ~ ' . ~ ' .  We were sufficiently 
intrigued to plot our data in the same way. The result is shown in figure 10 where we 
see that a similar result can be found but with 

We = f ( M o )  Re5I3, 

and 

(3.13) 

By cross-plotting these data we find 

f ( M o )  = 0.526 (3.14) 

Although it is not very clear from figure 10, this power-law behaviour is followed 

W e  = g(Mo)  Re4I3, (3.15) 

at least on the reduced logarithmic scale of this figure. As we will see in what follows 
the actual detailed behaviour is more complex than that given in equation (3.15) but 

as shown in figure 11. 

by a region of essentially constant W e  and then a variation as 
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10 10-0 102 104 
Re 

FIGURE 10. We us. Re for the values of M o  shown in figure 5. The agreement with 
We = f ( M o )  ReS1’ below the constant- We region is very good as shown for one case in figure 6. 
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FIGURE 1 1 .  A cross-plot of the data of figure 10 to determine the function F (  M o )  = 0.526 M0°358. 

we believe that it is a good representation in calculations where extreme precision is 
not required. 

Returning to equation (3.13) we show on figure 6 that it is a remarkably good 
approximation to the whole transition curve, both the part dominated by surface- 
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FIGURE 12 (a,b). For caption see facing page. 
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1- ' ' 1 1 ' ' 1 '  I 
10-2 10-1 100 10' 1 02 

Eo 
FIGURE 12. Dependent variables Cd, We, Fr2 and Re plotted versus the independent variable 
Eo, for values of (a) Mo = 2.605 x lo-'" ( b )  5.749 x and (cj 2.174 x lo-'. The regions of 
constant We and the asymptotes (equation (3.17)) to the spherical-cap regimes are shown on (a )  
only. Corresponding equations exist on ( b )  and (cj, but are not included to prevent confusion. 

active agents and that dominated by bubble distortion for Reynolds numbers below 
the drag minimum. 

We can carry this curve-fitting process one step further by noting that the exponent 
in equation (3.14) is very close to 1/3 so that on using this fact and rearranging 
equation (3.13) we obtain 

U = 0.145 = 0.145 ( ~ T3) v0.3 

d 2 g / v  
(3.16) 

Thus in terms of the reference velocity Uv = d 2 g / v  the velocity of rise is a weak 
function of Mo, so that for lop7 > M o  > lo-", the factor on the right-hand side 
varies by only a factor of 2 while Uv varies by a factor of 10 for a typical value of 
d. For the range of fluids of interest here the factor (gp2/03)0.075 varies by only 7% 
so that to a very good degree of approximation one can ignore the variations with p 
and ~7 and write 

- 0.093 in c.g.s. units and when W e  ,< 2 
U 

d2g / V O J  

(where we have used ~7 = 72 dyn cm-', g = 981 cm sp2 and p = 1.00 gm cmp3 in 
evaluating the factor ( ~ P ~ / o ~ ) O . O ~ ~ ) .  It seems likely that this curve-fitting exercise has 
little physical significance and should not replace the explanation in terms of bubble 
distortion and the accumulation of surface-active agents given earlier. It should only 
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be used as a quick and relatively easy way to calculate the velocity of rise under the 
appropriate circumstances. 

For values of Re, or any other variable for that matter, beyond the minimum drag 
point the bubble behaviour differed from that found so far. It either wobbled or 
followed a spiral path that grew in amplitude in proportion to the magnitude of its 
departure from the critical value of any particular parameter, e.g. Saffrnan (1956). Al- 
though the stability characteristics of the rise were observed no attempt was made to 
classify them except to note that unsteady bubble motion started just beyond the diam- 
eter which gave the maximum velocity of rise, i.e. the start of the constant-We regime 
discussed below. As the bubble size was increased even further we approached but 
did not reach the spherical-cap regime for our range of bubble volume. A number of 
approaches were tried in order to determine the scaling laws for the various dependent 
variables. A composite for three values of M o  is shown in figure 12, where all of the 
relevant dependent variables are plotted as a function of Eo. In figure 13 curves of only 
Fr and We versus Eo are shown for two further values of M o  but we include a designa- 
tion of the various regimes to be discussed in what follows. The most revealing curves 
are those of We versus Eo. Beyond the location of the minimum Cd, or maximum Fr2,  
We is approximately constant at a value, We,, that varies with Mo. The approximate 
extent of this constant-We regime in the E o  parameter space is designated as being 
from Eo,, to Eomi,. The measured values of We,, Eo,,, and Eomi, are plotted on 
figure 8. Note that in contrast to values of We, quoted in the published literature (e.g. 
Hartunian & Sears 1957) where the accuracy was not high, the present measurements 
are accurate to less than +5% and the trends with Mo can be seen clearly. 

For values of Eo 2 7 the approach to the spherical-cap regime can be accurately 
described by the relationship 

We=1 .25+ iEo .  (3.17) 

Dividing by Eo, gives 

1.25 1 112 Fr = __ + - or U = (1.25Ui2, +0.5gd) , Eo 2 (3.18) 

so that at the usually quoted value of the transition to the spherical-cap regime of 
Eo = 40, Fr2 = 0.531 or only slightly (6%) above the asymptotic value of 0.5. We 
conclude that surface tension effects slightly modified the tendency for spherical-cap 
behaviour in the regime 40 2 Eo 2 7. 

Finally between Eo,, and Eo = 7 all the curves are well approximated by 

We = 2.5Eo1l3, (3.19) 

as shown on the figures, or 
U = 1.58UFr Us, , 

an intimate mix of surface tension and gravitational effects, and independent of 
viscosity. In fact, all curves for values of Eo above Eomi, exhibit an independence of 
viscosity except that the actual value of Wecrit depends weakly on Mo. 

113 213 

4. Conclusions and discussion 
The conclusions are best presented by reference to figure 13 where we plot typical 

curves of Fr2 and We versus Eo for values of Mo that are different from those 
considered in figure 12. On these we note the regimes extracted by the analysis 
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FIGURE 13. We(*) and Fr2(.) us. E o  for ( a )  M o  = 2.722 x lo-" and ( b )  1.112 x Here 
we emphasise the various sub-regimes and their transition values of Eo: (i) the solid-to-bubble 
transition, equation (3.13), (ii) the constant- We regimes, (iii) the intermediate or penultimate 
transition from We = const to ultimate transition to the spherical-cap regime (equation (3.19)), 
(iv) the final transition to the spherical-cap regime (equation (3.17)) (v) the spherical-cap regime 
(equation (3.9)). 
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discussed in $3.2. Surprisingly, within this very simple system we have found at least 
five distinct regions, or six if we include the already well-known spherical-cap regime. 
On these plots, the coordinates of which are independent of the fluid viscosity, the 
behaviour is universal beyond approximately Eo,,, and depends only on g beyond 
E o  NN 40. Between Eomi, and Eo,,, the Weber number is constant, but at a value 
which depends weakly on Mo and hence on viscosity. Below Eomi, or alternatively 
the maximum of Fr2, the results are essentially independent of the surface tension 
and depend only on viscosity and gravity. 

These results then represent a continuous transition from a flow dominated by 
viscosity and gravity to one dominated by gravity alone. Between, surface tension 
first enters strongly in the constant-We regime and then in weaker and weaker form 
as the spherical-cap regime is approached, while the viscosity at first enters weakly 
and then not at all beyond Eomax. 

In view of the very distinct fractional power-laws we have found one must conclude 
that the underlying dynamical balances are likely to be relatively simple. For example 
in the region below Eomi, equation (3.16) suggests, to a very good approximation, that 

this in turn suggests a balance between the buoyancy force and a viscous surface 
force, i.e. 

pd3g - ( y )  d2 

(where p is the dynamic viscosity) which is essentially independent of the bubble 
shape and the presence of contamination below We NN 2, even though we know the 
bubble is distorted and a small amount of contamination is present. 

In the constant- We regime 
112 

u = const. (5) 
a result which is independent of both v and g except in that they determine the value 
of the constant. Here the balance is presumably between the dynamic pressure pU2 
and the internal pressure o l d  which sets the bubble shape and hence the dissipation. 
The further transitions to the spherical-cap regime, which is itself a balance between 
the buoyancy force (pgd3) and dynamic pressure force (pU2d2) ,  are more complex 
hybrid balances which, as far as we can see, are not yet amenable to a simple 
interpretation since they appear to be dominated by effects, e.g. bubble oscillation 
and wobble, for which no simple descriptions are possible. See however Saffman 
(1956) in which such an attempt is made. 

The experiments discussed here were performed by C.G. and M.K., who were 
partially supported by internal funding at USC. T.M. and ED. were supported in 
their regular faculty positions by USC and F-AU respectively. 

Note added in proof: Dr J. W. M. Bush, of Cambridge University, has directed our 
attention to a paper by Duinivald (1995), on bubble rise in highly purified water at 
19.6"C7 in which he finds good agreement with the theory of Moore (1965). A careful 
study of his published data allows several interesting observations. Agreement with 
the theory occurs in the range of Re from, approximately, 150 to 300. In this range our 
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results are about 10-20% higher, for nominally the same value of Mo. In both experi- 
ments the minimum drag occurs at R e  w 510 and the numerical values are the same to 
within experimental error. At lower values of R e  the drag coefficients measured in his 
experiments rise above Moore’s theory and appear to be approaching the solid-sphere 
drag curve also. Applying the technique used in the present paper, i.e. the one that 
results in figure 7, shows that, upon extrapolation, d, w 0.48 mm and the solid-sphere 
drag is attained at d 5 0.4 mm. This suggests that while his fluid was much cleaner 
than the triply distilled water used in the present experiments, even there a minute 
quantity of surface-active agent was present, which eventually could have accumulated 
on the very smallest bubbles and affected their surface boundary condition. Finally, it 
appears that the measured drag at the higher values of R e  was unaffected and confirms 
that the Moore theory agrees with experiment over the range of Re  quoted above. 

REFERENCES 
AGRAWAL, S. K. & WASAN, D. T. 1979 The effect of interfacial viscosities on the motion of drops 

BLANCO, A. & MAGNANDET, J. 1995 The structure of the axisymmetric high-Reynolds number for 
and bubbles. Chem. Engng J .  18, 215. 

around an ellipsoidal bubble of fixed shape. Phys. Fluids 7, 1265-1274. 
BRABSTON, D. C. & KELLER, H. B. 1975 Viscous flows past spherical gas bubbles. J .  Fluid Mech. 69, 

179-189. 
CLIFT, R., GRACE, J. R. & WEBER, M. E. 1978 Bubbles, Drops and Particles. Academic (referred to 

DUINIVALD, P. C. 1995 The rise velocity and shape of bubbles in pure water at high Reynolds 

HAMIELEC, A. E., JOHNSON, A. 1. & Houghton, W. T. 1967 AIChE J.  13, 220-224. 
HARPER, J. F. 1972 The motion of bubbles and drops through liquids. Adu. Appl. Mech. 12, 59-129. 
HARTHOLDT, G. P., HOFFMAN, A. C., JANSSEN, L. P. B. M., HOOGSTRATEN, H. W. & MOES, J. H. 

1994 Finite element calculations of flow past a spherical gas bubble rising on the axis of a 
cylindrical tube. Z.  Angew. Math. Phys. 45, 733-745. 

HARTUNIAN, R. A. & SEARS, W. R. 1957 On the instability of small gas bubbles moving uniformly 
in various liquids. J .  Fluid Mech. 3, 2747. 

LAPPLE, C. E. 1951 Particle Dynamics. Engng Res. Lab., E. I. Dupont and Nemours and Co., 
Wilmington, Delaware. 

LE CLAIR, B. P. & HAMIELEC, A. E. 1971 Can. J .  Chem. Engng 49, 713-720. 
MAGNAUDET, J., RIVERA, M. & FABRE, J. 1995 Accelerated flows past a rigid sphere or spherical 

bubble. Part 1. Steady, straining flow. J .  Fluid Mech. 284, 97-136. 
MAXWORTHY, T. 1965 Accurate measurements of sphere drag at low Reynolds numbers. J.  Fluid 

Mech. 23, 369-372. 
MEI, R., KLAUSNEL, J. F. & LAWRENCE, C. J. 1994 A note on the history force on a spherical bubble 

at finite Reynolds number. Phys. Fluids 6, 418-420. 
MINER, C. S. & DALTON, N. N. 1953 Glycerol. Reinhold. 
MOORE, D. W. 1963 The boundary layer on a spherical gas bubble. J .  Fluid Mech. 16, 161-176. 
MOORE, D. W. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J .  

Fluid Mech. 23, 744-766. 
0 ~ 0 2 ,  H. N. & SADHAL, S. S. 1988 Effects of soluble and insoluble surfactants on the motion of 

drops. J .  Fluid Mech. 194, 563-579. 
RYSKIND, C. & LEAL, L. G. 1984a Numerical solution of free-boundary problems in fluid mechanics. 

Part 1. The finite difference technique. J .  Fluid Mech. 148, 1-17. 
RYSKIND, G. & LEAL, L. G. 1984b Numerical solution of free-boundary problems in fluid mechanics. 

Part 2. Buoyancy driven motion of a gas bubble through a quiescent liquid. J .  Fluid Mech. 

herein as CGW). 

number. J .  Fluid Mech. 292, 325-332. 

148, 19-35. 
SAFFMAN, D. G. 1956 On the rise of small gas bubbles in water. J.  Fluid Mech. 1, 249-275. 
TAYLOR, J. D. & ACRIVOS, A. J. 1964 On the deformation and drag of a falling viscous drop at low 

Reynolds number. J .  Fluid Mech. 18, 466-476. 


